SONY

CXB1828ER

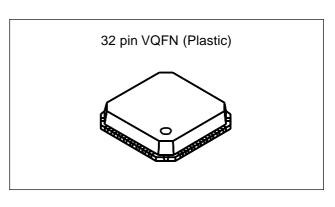
2.5Gbps Laser Diode Driver

Description

The CXB1828ER is a high-speed monolithic laser diode driver. This IC can drive the data rate of 2.5Gbps and the modulation current of up to 50mA. The bias current of up to 50mA can be supplied and it is controlled by the built-in APC (automatic power control). The modulation current and bias current are designed to be linearly controlled by the voltage input to the control pin.

This IC has a built-in DFF, and through mode or DFF mode can be selected. In through mode the signal goes as it is, and in DFF mode the input signal is retimed by the external clock. The data input pin and the clock input pin can accept the differential input of PECL and CML, and the 50Ω termination resistors are provided in the IC.

The shutdown function which shuts down the modulation current and bias current, the activity error detect circuit which detects that the signal has no input, and the alarm output power-on reset circuit. Furthermore, the duty cycle control circuit which corrects the modulation output signal duty is included in this IC.


The CXB1828ER employs the 4.8mm $\times 4.8$ mm of 32-pin plastic package, contributing to the miniaturization of the optical mode.

Features

- · Direct laser diode drive
- Maximum data rate of 2.5Gbps
- Power-on reset function
- Automatic power control (APC) for bias current
- Alarm function and shutdown function
- Differential PECL and CML inputs or AC coupled input
- · Internal duty cycle correction circuit
- Activity error detector function for laser safety
- Typical rise time is 80ps.
- Built-in 50Ω input termination resistor
- Compact package size: 4.8mm × 4.8mm
- Single +3.3V supply voltage

Applications

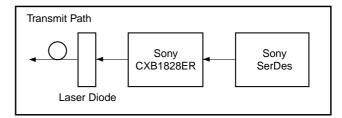
- Gigabit ethernet: 1.25Gbps
- SONET/SDH: 622Mbps, 2.5Gbps

Absolute Maximum Ratings

	U U		
 Supply voltage 	Vcc – Vee	-0.3 to +6.0	V
• Data and clock inp	out voltage diffe	erence	
	Vd – Vdn	2.5	V
• Bias output curren	t	100	mΑ
• Modulation output	current	100	mΑ
• Storage temperatu	ire		
	Tstg	-65 to +150	°C

Recommended Operating Conditions

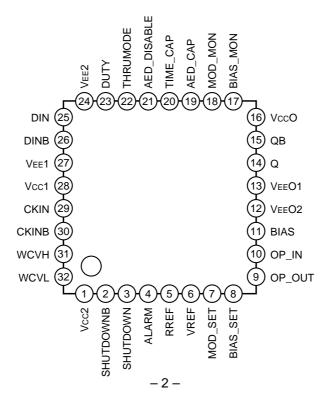
 Supply voltage 	Vcc – Vee	3.14 to 3.46	V
• Operating ambien	t temperature		
	Та	-40 to +85	°C


Important Notes

The IC requires SLOW turning power on and off. See Vcc rise and fall time in AC characteristics.

Electrostatic Strength

This IC has a very sensitive electrostatic strength, so care should be taken for handling.


Typical Transmit Block Diagram

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram MOD_MON BIAS_MON DUTY Л Vcc - 1.4V QB ≩10kΩ Q DIN \$50Ω 1 MUX 0 Duty ≩50Ω Control DINB Vcc - 1.4V ≷10kΩ D Q CKIN I ≹50Ω 50:1 kill Q π π ≩50Ω CKINB 🛛 Activity Error BIAS Detecto AED_CAP t 50:1 AED_DISABLE kill 1.8V High π π WCVH Q s Vref Gen BIAS_SET WCVL 4kΩ -₩-Low R Q OP_OUT 0.3V Vcc Time tage Error Det. Vol Vref 1.1V Stretcher □ OP_IN TIME_CAP w 15kΩ ______ 60kΩ to Modulation/Bias Control Vref Gen 1.9V SHUTDOWN > VREF ⊐ MOD_SET ALARM · RREF .

Pin Assignment

Pin Description

Pin No.	Symbol	Typical pin voltage (V) DC	I/O	Equivalent circuit	Description
1	Vcc2	3.3			Positive power supply.
2	SHUTDOWNB	0 or Vcc	I	$2 + \frac{10k\Omega}{3}$	TTL input. The modulation current and bias current is shut down by inputting the Low voltage to this pin. High level when open.
3	SHUTDOWN	0 or Vcc	I	VEE2	TTL input. The modulation current and bias current is shut down by inputting the High voltage to this pin. High level when left open.
4	ALARM		0	Vcc2 (4) VEE2	TTL output. High when the abnomality is detected from the OP_IN pin voltage. The abnormal voltage of OP_IN is Vop < 0.3V or Vop > 1.8V.
5	RREF			Vcc2	Connect an external resistor of 18kΩ between this pin and Vcc.

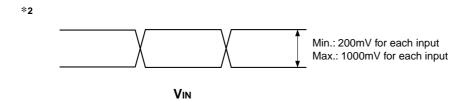
Pin No.	Symbol	Typical pin voltage (V) DC	I/O	Equivalent circuit	Description
6	VREF	1.9	0	Vcc2 26.4KΩ VEE2	Reference voltage output. GND reference 1.9V.
7	MOD_SET	0.2 to 2.0	I		Modulation current control. The modulation current is controlled by this pin voltage.
8	BIAS_SET	0.2 to 2.0	I	(8) VEE2	Bias current control. The bias current is controlled by the voltage of this pin.
9	OP_OUT		0	Vcc2	Internal operational amplifier output. Used for the bias current automatic power control (APC). The OP_OUT pin is connected to the BIAS_SET pin. Connect a 0.1µF capacitor between this pin and GND.
10	OP_IN	0.3 to 1.8	I	Vcc2	The internal operational amplifier input for the bias current automatic power control (APC).

Pin No.	Symbol	Typical pin voltage (V)	I/O	Equivalent circuit	Description
		DC			
11	BIAS		0	Vcc1 (1) Current Source VEEO2	Laser bias current output.
12	VeeO2	0			Negative power supply for the modulation and bias output.
13	VEEO1	0			Negative power supply for the modulation output.
14	Q		0		Laser modulation current output. Open collector output.
15	QB		0	VEEO1 VEEO1	Complementary current output. Connect the laser diode not to this pin, but to the Q pin.
16	VccO	3.3			Positive power supply for the modulation output.
17	BIAS_MON		Ο	Vcc1	Bias current monitor. 1/50 of the bias current flows to this pin. This pin is connected to Vcc either through a resistor $1k\Omega$ or directly.
18	MOD_MON		ο	VEE1 (MOD_MON) VEEO2 (BIAS_MON)	Modulation current monitor. 1/50 of the modulation current flows to this pin. This pin is connected to Vcc either through a resistor $1k\Omega$ or directly.

Pin No.	Symbol	Typical pin voltage (V) DC	I/O	Equivalent circuit	Description
19	AED_CAP			Vcc2 30pF 19 500Ω VEE2	Capacitor connection for the activity error detector. If the active detector function is not required, this pin can be left open. When a capacitor is connected between the AED_CAP pin and Vcc, the time till the error is detected can be extended.
20	TIME_CAP			Vcc2 (20) 500Ω 30pF VEE2	Capacitor connection for the alarm power-on reset. The period of the power-on reset time is controlled by a capacitor (recommended value is 0.01µF) connected between the TIME_CAP pin and GND. If the ALARM function is not required, this pin can be left open.
21	AED_DISABLE		I	$Vcc2$ (2) $(1)k\Omega$	TTL input. This pin controls the activity error detector circuit. When High (open or connected to Vcc), the activity error detector function is disabled. When Low (connected to GND), the activity error detector function is enabled.
22	THRUMODE		I	Vcc2 10kΩ 10kΩ 10kΩ VEE2	TTL input. When High (open or connected to Vcc), the input data goes not through the D flip-flop. When Low (connected to GND), the serial input data goes through the D flip-flop within the chip.

Pin No.	Symbol	Typical pin voltage (V) DC	I/O	Equivalent circuit	Description
23	DUTY			Vcc1	Resistor connection for the duty cycle control. When an external resistor is connected between the DUTY pin and GND, the modulation pulse width can be expanded.
24	Vee2	0			Negative power supply.
25	DIN	PECL	I	Vcc1 25 50Ω \$ 10kΩ	Differential PECL and CML data inputs. These two inputs are internally
26	DINB	CML		26 50Ω ≶ 10kΩ VEE1	connected by 100 Ω and biased by 10k Ω to Vcc – 1.4V.
27	Vee1	0			Negative power supply.
28	Vcc1	3.3			Positive power supply.
29	CKIN	PECL	Ι		Differential PECL and CML clock inputs. These two inputs are internally
30	CKINB	CML	•		connected by $10k\Omega$ and biased by $10k\Omega$ to Vcc – $1.4V$.
31	WCVH	1.8		Vcc2 (31) Vee2 Vee2	Window comparator's higher threshold voltage for ALARM. The default high alarm assert voltage for the comparator is 1.8V.

Pin No.	Symbol	Typical pin voltage (V) DC	I/O	Equivalent circuit	Description
32	WCVL	0.3		Vcc2 31 K K K K K K K K	Window comparator's lower threshold voltage for ALARM. The default low alarm assert voltage for the comparator is 0.3V.

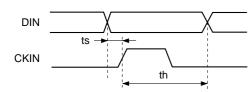

Electrical Characteristics

DC Characteristics

$(Vcc - Vee = 3.14 \text{ to } 3.46V, Ta = -40 \text{ to } +85^{\circ}C)$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
DC power supply voltage	VDC	Vcc – Vee	3.14	3.3	3.46	V
Supply current (DATA THRU MODE)	ICC_THRU	Iq = 0mA, IB = 0mA		62	84	mA
Supply current (D-FF MODE)	ICC_DFF	$I_Q = 0mA$, $I_B = 0mA$		65	88	mA
Maximum modulation output current	Ідмах		50			mA
Minimum modulation output current					7	mA
Modulation output voltage range	Vq		Vcc – 2		Vcc	V
Maximum bias output current	Івмах		50			mA
Minimum bias output current	Івмін				3	mA
Bias output voltage range	Vв		Vcc – 2		Vcc	V
Modulation shutdown current	IQSHD				100	μA
Bias shutdown current	Івѕно				100	μA
DIN, CKIN input High voltage (PECL)	Veih	*1	Vcc – 1.17		Vcc – 0.81	V
DIN, CKIN input Low voltage (PECL)	Veil	*1	Vcc – 1.84		Vcc – 1.48	V
DIN, CKIN differential input voltage (CML)	VIN	*2	400		2000	mVp-p
Internal resistance between DIN and DINB, CKIN and CKINB	Rdi, Rcк		70		130	Ω
Internal input reference voltage at DIN, DINB, CKIN, CKINB	Veir			Vcc – 1.37		V
TTL input High voltage	Vтін		2.0		Vcc + 0.3	V
TTL input Low voltage	Vtil		-0.3		0.8	V
TTL input current High	Ітін				5	μA
TTL input current Low	Ιτι∟		-250			μA
ALARM output High voltage	Vтон	lin = -0.4mA	2.4		Vcc	V
ALARM output Low voltage	VTOL	lin = 2.0mA	0		0.5	V
VREF output voltage	Vref	lout = 0 to 500μ A	1.80		2.05	V
WCVH output voltage	Vwн	Open voltage	1.70		2.05	V
WCVL output voltage	Vwl	Open voltage	0.28		0.37	V
Vcc voltage error detect voltage	Vcc_err		2.59		3.08	V

*1 Since the internal input reference voltage may become lower than the Low level of ECL, input the signal into DIN and CKIN by AC coupling at the time of a single phase input.



AC Characteristics

(Vcc - VEE = 3.14 to 3.46V, Ta = -40 to +85°C)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Maximum data rate	fdmax		2.488			Gbps
Maximum variable High pulse width by duty cycle control	tdelay	Data rate = 2.5Gbps	100			ps
Rise time (20 to 80%)	tr	$I_Q = 50 \text{mA}, \text{RL} = 25 \Omega$		80		ps
Fall time (80 to 20%)	tf	$I_Q = 50 \text{mA}, \text{RL} = 25 \Omega$		90		ps
DIN – CKIN setup time	ts	Rise and fall time of input = 130ps*3	30			ps
DIN – CKIN hold time	th	Rise and fall time of input = 130ps ^{*3}	50			ps
Vcc rise time	tvccr	10 to 90%	5			ms
Vcc fall time	tvccf	90 to 10%	5			ms

*3

Setup time, Hold time

DC/AC Characteristics for the APC Circuit

 $(Vcc - V_{EE} = 3.14 \text{ to } 3.46\text{V}, Ta = -40 \text{ to } +85^{\circ}\text{C})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
OP_IN input voltage range	VI_OP			Fig. 15		V
OP_OUT output maximum voltage	Vo_opmax				2.0	V
OP_OUT output minimum voltage	Vo_opmin		0.2			V
Minimum OP_OUT output voltage at shutdown condition	Vo_opsdn				0.2	V
OP_IN input current	II_OP		-2.0		1	μA
OP_OUT output source current	Io_opsorc				4	μA
OP_OUT output sink current	Io_opsink				4	μA
APC operational amplifier gain	Av			12		dB
Monitor photodiode current range	Impd		10		1000	μA

Functional Block Description

APC (Automatic power control)

The APC loop consists of the laser driver and APC operational amplifier. The APC operational amplifier is configured as an inverting integrator. It is the input voltage that is derived from the monitor current by the monitor photodiode and an external resistor RPD to OP_IN.

The input voltage is inverted and the output from OP_OUT. The bias current is controlled by inputting the output to the BIAS_SET pin. The bias current is set by RPD. A capacitor CPD with a value of 1000pF works for stability and reduces the noise. Use CAPC (recommended value 0.1μ F) between the OP_OUT pin and VEE. CAPC controls the rapid rise of the OP_OUT pin when the shutdown is cancelled, and suppresses the excess current flowing to the laser diode.

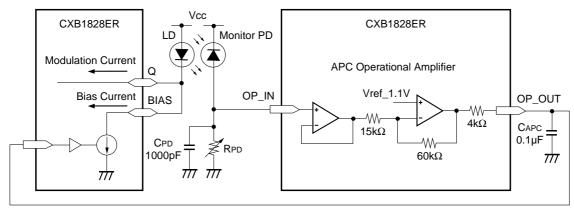
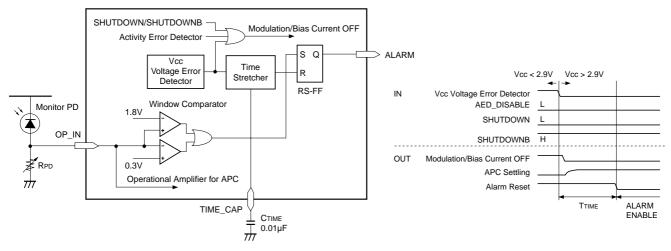



Fig.1. APC Function Block Diagram

Alarm function

This circuit is for the APC operation. When the input OP_IN is provided with an excess voltage or minimal voltage, the window comparator output goes High, and this signal is latched resulting in the output of alarm signal. The WCVH and WCVL pin voltages are the upper and the lower threshold values of the window comparator for ALARM. The default value of WCVH is 1.8V and that of WCVL is 0.3V. If the voltage of OP_IN is lower than WCVL or higher than WCVH, ALARM signal is asserted High. This alarm signal returns to Low only by the Vcc power-on reset function. Power-on reset time (TTIME) is set by the external capacitor put between the TIME_CAP pin and VEE. (Refer to Fig. 8.) It is necessary for the alarm signal output to be Low forcibly because the excess voltage or minimal voltage may be applied to the OP_IN pin till the APC operation completes. The recommended value of the capacitor is 0.01µF.

Fig.3. Timing Chart of Alarm Function

Data input

The PECL/CML signal is input to the data buffer at a maximum data rate of 2.5Gbps. This input pin is biased by the reference bias voltage (Vcc – 1.4V) for the AC coupling input. An on-chip 100 Ω resistor is put between the DIN and DINB pins. The data buffer has the frequency detector and input amplitude voltage detector for the Activity Error Detector (AED).

Clock input

The PECL/CML clock is input to the clock buffer at a maximum data rate of 2.5GHz. This input pin is biased by the reference bias voltage (Vcc – 1.4V) for the AC coupling input. An on-chip 100 Ω resistor is put between the CKIN and CKINB pins.

Signal duty cycle correction

The output pulse width can be extended as shown in Fig.9 by connecting an external resistor between the DUTY pin and VEE, and setting its resistor value from 0Ω to $4k\Omega$. The output pulse width can be extended up to 100ps (min.). Short the DUTY pin to VEE when not want to vary the duty.

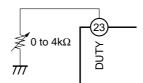


Fig.4. Duty Cycle Control

Bias current and modulation current control

The bias current and modulation current can be controlled linearly by the voltage input to the BIAS_SET and MOD_SET pins as shown in Figs.10 and 11. The voltage applied to the BIAS_SET and MOD_SET pins can be set by the external resistor between the VREF pin and VEE. Refer to Fig.5.

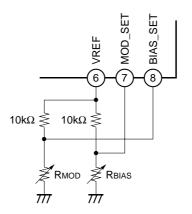


Fig.5. Modulation/Bias Control

Bias current and modulation current monitor

This circuit monitors the bias and modulation current. The BIAS_MON and the MOD_MON pins should be connected to Vcc either directly or through a resistor. The modulation current and monitor current are in the rate of approximately 50:1. (Refer to Fig.12 and Fig.13.)

Thru-mode

When this pin is High or connected to Vcc, the input data goes not through the internal flip-flop. If this pin is grounded the input data goes through the D flip-flop.

Shutdown function

This circuit disables the output current, that is, the bias and modulation current is turned off and used to shut off the laser. And the voltage of OP_OUT is set to VEE. The function block diagram for all of the shutdown mechanism for the circuit is shown in Fig.6. The shutdown functions when one of the following conditions is met.

- 1) SHUTDOWN is High.
- 2) SHUTDOWNB is Low.
- 3) The activity error detector detects an error of the DIN/DINB input signal.
- 4) The voltage error detector detects Vcc is below 2.59 to 3.08V.*
- (* The bias current may flow at approximately Vcc = 2.0V.)

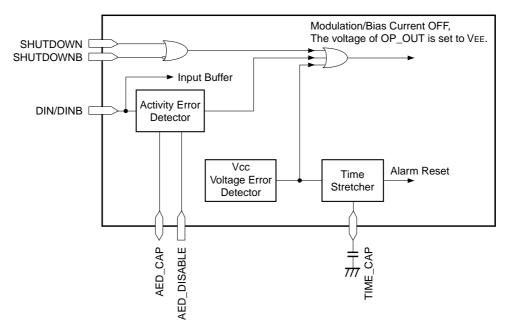


Fig.6. Shutdown Function Block Diagram

Activity error detect function

The activity error detect circuit monitors the DIN/DINB input signal, and shuts down the output current when this circuit determines that the input data signal has no input. The conditions where the input signal is determined to be no signal are when the input data signal logic is not varied over a period of the time set by the user and when the voltage swing is too small (< 100mVpp-diff). Either of these conditions is met, the shutdown circuit is enabled and the modulation current and laser bias current are shut down.

If needed, the time till the activity error detect can be extended. Fig.14 shows the graphs of the activity error detection time (TAED) vs. CAED. When the activity error detect function is not required, connect the AED_DISABE pin to Vcc or leave it the pin open.

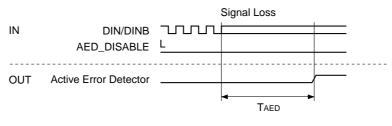
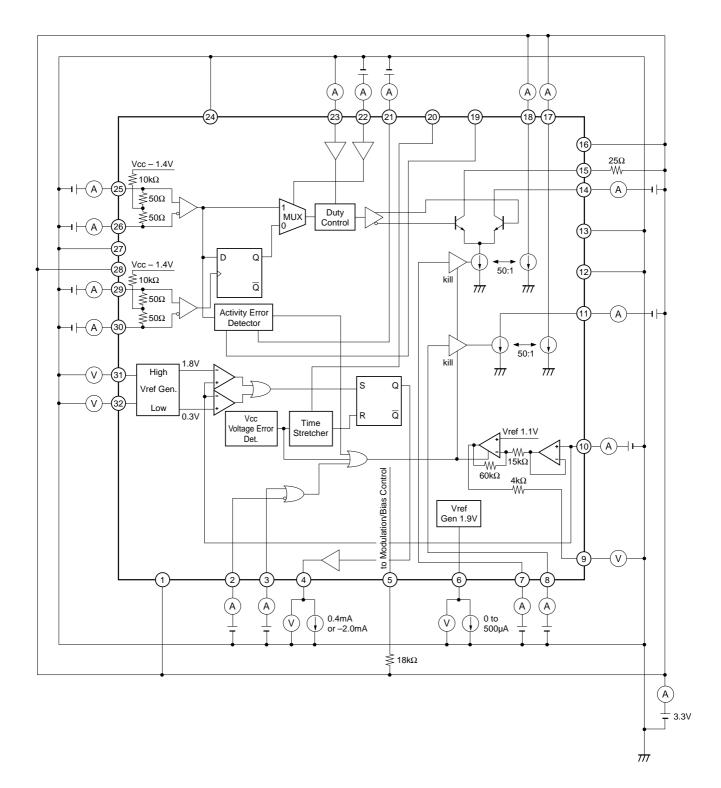
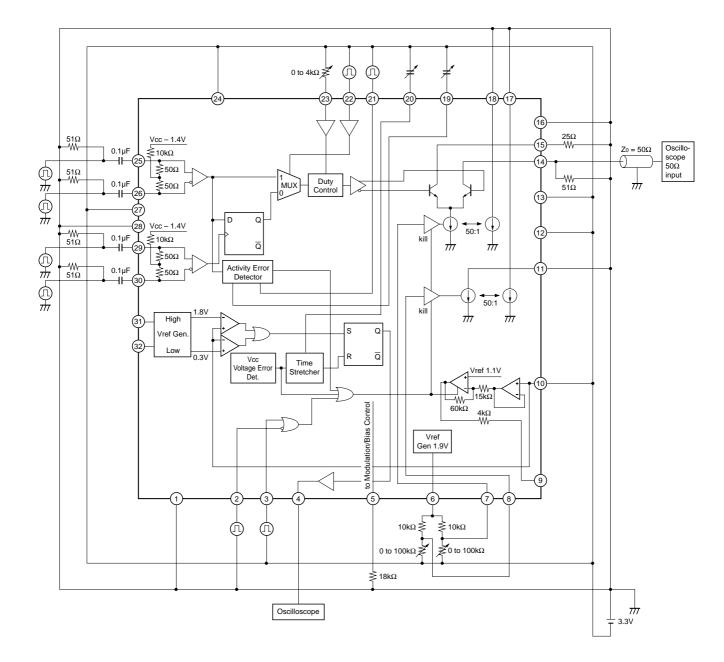
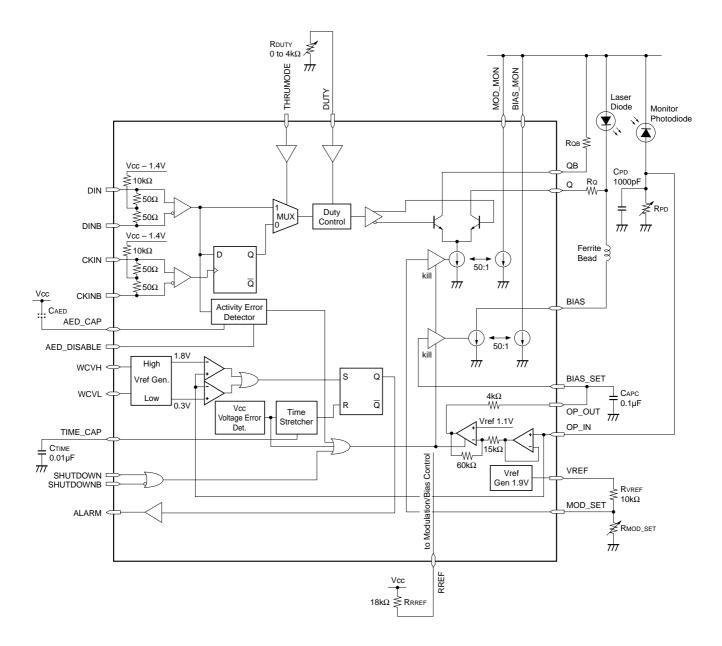
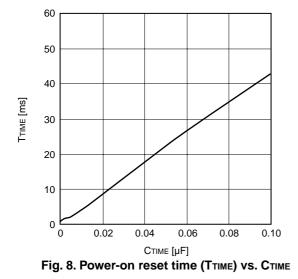




Fig.7. Timing Chart of AED Function



AC Electrical Characteristics Measurement Circuit


Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Modulation current [mA]

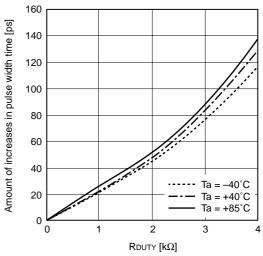
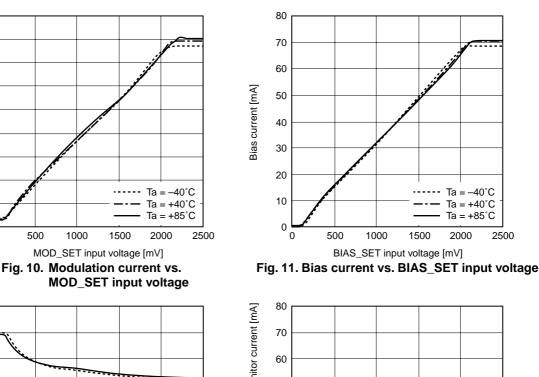
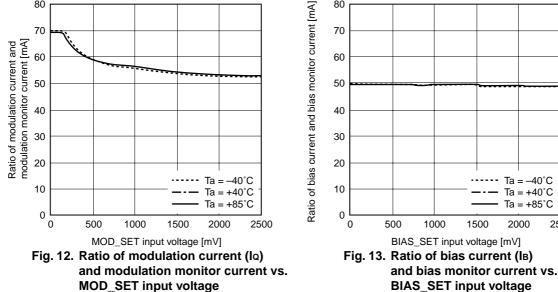
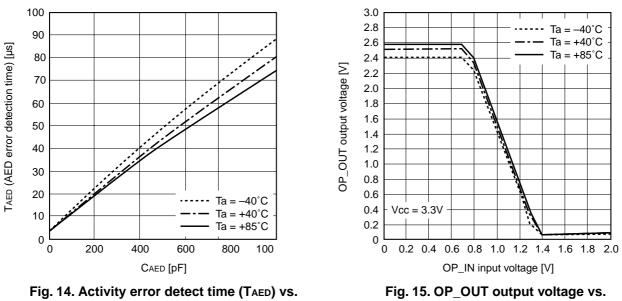





Fig. 9. Increment of output pulse width vs. RDUTY

CAED

OP_IN input voltage

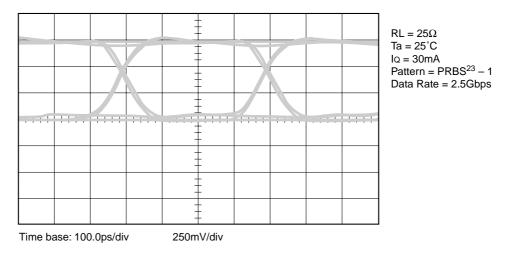
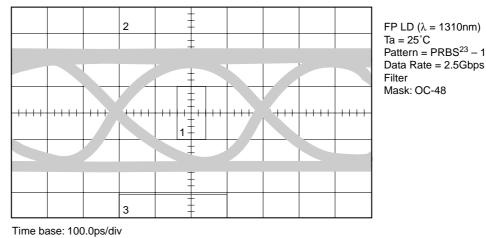
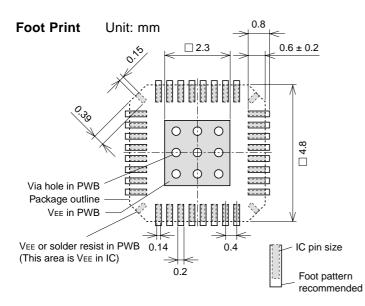
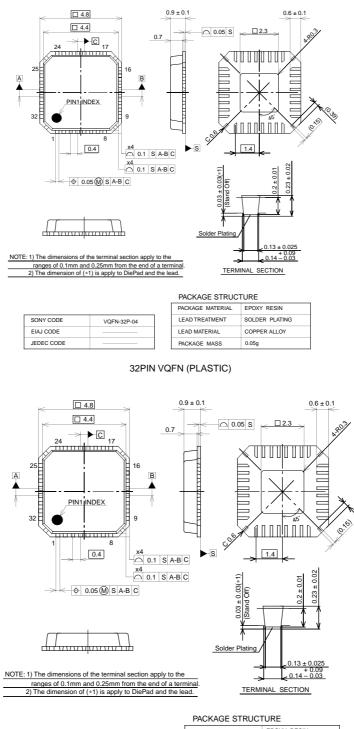


Fig. 16. Electrical Output Waveform


Fig. 17. Optical Output Waveform

Package Outline

Unit: mm

32PIN VQFN (PLASTIC)

SONY CODE	VQFN-32P-04
EIAJ CODE	
JEDEC CODE	

LEAD PLATING SPECIFICATIONS

ITEM	SPEC.
LEAD MATERIAL	COPPER ALLOY
SOLDER COMPOSITION	Sn-Bi Bi:1-4wt%
PLATING THICKNESS	5-18µm

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.05g